Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 93(1): 71-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372569

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS: To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS: The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS: This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Neurais , Humanos , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fenótipo , Encéfalo/metabolismo , Camundongos Knockout
2.
Adv Healthc Mater ; 11(19): e2200206, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882512

RESUMO

Spinal cord injury often results in devastating consequences for those afflicted, with very few therapeutic options. A central element of spinal cord injuries is astrogliosis, which forms a glial scar that inhibits neuronal regeneration post-injury. Chondroitinase ABC (ChABC) is an enzyme capable of degrading chondroitin sulfate proteoglycan (CSPG), the predominant extracellular matrix component of the glial scar. However, poor protein stability remains a challenge in its therapeutic use. Messenger RNA (mRNA) delivery is an emerging gene therapy technology for in vivo production of difficult-to-produce therapeutic proteins. Here, mineral-coated microparticles as an efficient, non-viral mRNA delivery vehicles to produce exogenous ChABC in situ within a spinal cord lesion are used. ChABC production reduces the deposition of CSPGs in an in vitro model of astrogliosis, and direct injection of these microparticles within a glial scar forces local overexpression of ChABC and improves recovery of motor function seven weeks post-injury.


Assuntos
Condroitina ABC Liase , Traumatismos da Medula Espinal , Animais , Condroitina ABC Liase/metabolismo , Condroitina ABC Liase/farmacologia , Condroitina ABC Liase/uso terapêutico , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/uso terapêutico , Gliose/tratamento farmacológico , Membro Posterior/patologia , Regeneração Nervosa , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
3.
Sci Adv ; 8(24): eabn7298, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714187

RESUMO

Adipocytes are key regulators of human metabolism, and their dysfunction in insulin signaling is central to metabolic diseases including type II diabetes mellitus (T2D). However, the progression of insulin resistance into T2D is still poorly understood. This limited understanding is due, in part, to the dearth of suitable models of insulin signaling in human adipocytes. Traditionally, adipocyte models fail to recapitulate in vivo insulin signaling, possibly due to exposure to supraphysiological nutrient and hormone conditions. We developed a protocol for human pluripotent stem cell-derived adipocytes that uses physiological nutrient conditions to produce a potent insulin response comparable to in vivo adipocytes. After systematic optimization, this protocol allows robust insulin-stimulated glucose uptake and transcriptional insulin response. Furthermore, exposure of sensitized adipocytes to physiological hyperinsulinemia dampens insulin-stimulated glucose uptake and dysregulates insulin-responsive transcription. Overall, our methodology provides a novel platform for the mechanistic study of insulin signaling and resistance using human pluripotent stem cell-derived adipocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adipócitos/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células-Tronco/metabolismo
4.
Adv Drug Deliv Rev ; 158: 116-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32987094

RESUMO

Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.


Assuntos
Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Engenharia Tecidual/métodos , Animais , Descoberta de Drogas/métodos , Humanos , Técnicas In Vitro/métodos , Modelos Animais , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/tratamento farmacológico , Obesidade/tratamento farmacológico , Vacinas/imunologia
5.
Sci Adv ; 6(27)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937431

RESUMO

Nonviral mRNA delivery is an attractive therapeutic gene delivery strategy, as it achieves efficient protein overexpression in vivo and has a desirable safety profile. However, mRNA's short cytoplasmic half-life limits its utility to therapeutic applications amenable to repeated dosing or short-term overexpression. Here, we describe a biomaterial that enables a durable in vivo response to a single mRNA dose via an "overexpress and sequester" mechanism, whereby mRNA-transfected cells locally overexpress a growth factor that is then sequestered within the biomaterial to sustain the biologic response over time. In a murine diabetic wound model, this strategy demonstrated improved wound healing compared to delivery of a single mRNA dose alone or recombinant protein. In addition, codelivery of anti-inflammatory proteins using this biomaterial eliminated the need for mRNA chemical modification for in vivo therapeutic efficacy. The results support an approach that may be broadly applicable for single-dose delivery of mRNA without chemical modification.


Assuntos
Materiais Biocompatíveis , Cicatrização , Animais , Técnicas de Transferência de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Biomaterials ; 248: 120007, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302801

RESUMO

Translation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation. We show that the MCMs stabilize bFGF against thermally induced activity loss and provide more efficient sustained release of active growth factor compared to polymeric carriers commonly used for growth factor delivery. Using a statistically driven optimization approach called Design of Experiments, we generated a bFGF-loaded MCM formulation that supported hPSC expansion over 25 passages without the need for additional bFGF supplementation to the media, resulting in greater than 80% reduction in bFGF usage compared to standard approaches. This materials-based strategy to stabilize and sustain delivery of a thermolabile growth factor has broad potential to reduce costs associated with recombinant protein supplements in scalable biomanufacturing of emerging cell therapies.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Proliferação de Células , Preparações de Ação Retardada , Humanos , Peptídeos e Proteínas de Sinalização Intercelular
7.
J Neuroinflammation ; 16(1): 93, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039819

RESUMO

BACKGROUND: The anti-inflammatory cytokine interleukin-10 (IL-10) has been explored previously as a treatment method for spinal cord injury (SCI) due to its ability to attenuate pro-inflammatory cytokines and reduce apoptosis. Primary limitations when using systemic injections of IL-10 are that it is rapidly cleared from the injury site and that it does not cross the blood-spinal cord barrier. OBJECTIVE: Here, mineral-coated microparticles (MCMs) were used to obtain a local sustained delivery of IL-10 directly into the injury site after SCI. METHODS: Female Sprague-Dawley rats were contused at T10 and treated with either an intraperitoneal injection of IL-10, an intramedullary injection of IL-10, or MCMs bound with IL-10 (MCMs+IL-10). After treatment, cytokine levels were measured in the spinal cord, functional testing and electrophysiology were performed, axon tracers were injected into the brainstem and motor cortex, macrophage levels were counted using flow cytometry and immunohistochemistry, and lesion size was measured. RESULTS: When treated with MCMs+IL-10, IL-10 was significantly elevated in the injury site and inflammatory cytokines were significantly suppressed, prompting significantly less cells expressing antigens characteristic of inflammatory macrophages and significantly more cells expressing antigens characteristic of earlier stage anti-inflammatory macrophages. Significantly more axons were preserved within the rubrospinal and reticulospinal tracts through the injury site when treated with MCMs+IL-10; however, there was no significant difference in corticospinal tract axons preserved, regardless of treatment group. The rats treated with MCMs+IL-10 were the only group with a significantly higher functional score compared to injured controls 28 days post-contusion. CONCLUSION: These data demonstrate that MCMs can effectively deliver biologically active IL-10 for an extended period of time altering macrophage phenotype and aiding in functional recovery after SCI.


Assuntos
Inflamação/patologia , Interleucina-10/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Traumatismos da Medula Espinal/patologia , Animais , Formas de Dosagem , Feminino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
8.
Acta Biomater ; 95: 408-417, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004846

RESUMO

Three-dimensional (3D) multicellular aggregates, in comparison to two-dimensional monolayer culture, can provide tissue culture models that better recapitulate the abundant cell-cell and cell-matrix interactions found in vivo. In addition, aggregates are potentially useful building blocks for tissue engineering. However, control over the interior aggregate microenvironment is challenging due to inherent barriers for diffusion of biological mediators (e.g. growth factors) throughout the multicellular aggregates. Previous studies have shown that incorporation of biomaterials into multicellular aggregates can support cell survival and control differentiation of stem cell aggregates by delivering morphogens from within the 3D construct. In this study, we developed a highly efficient microparticle-based gene delivery approach to uniformly transfect human mesenchymal stromal cells (hMSC) within multicellular aggregates and cell sheets. We hypothesized that release of plasmid DNA (pDNA) lipoplexes from mineral-coated microparticles (MCMs) within 3D hMSC constructs would improve transfection in comparison to standard free pDNA lipoplex delivery in the media. Our approach increased transfection efficiency 5-fold over delivery of free pDNA lipoplexes in the media and resulted in homogenous distribution of transfected cells throughout the 3D constructs. Additionally, we found that MCMs improved hMSC transfection by specifically increasing macropinocytosis-mediated uptake of pDNA. Finally, we showed up to a three-fold increase of bone morphogenetic protein-2 (BMP-2) expression and enhanced calcium deposition within 3D hMSC constructs following MCM-mediated delivery of a BMP-2 encoding plasmid and culture in osteogenic medium. The technology described here provides a valuable tool for achieving efficient and homogenous transfection of 3D cell constructs and is therefore of particular value in tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This original research describes a materials-based approach, whereby use of mineral-coated microparticles improves the efficiency of non-viral gene delivery in three-dimensional human mesenchymal stromal cell constructs. Specifically, it demonstrates the use of mineral-coated microparticles to enable highly efficient transfection of human mesenchymal stromal cells in large, 3D culture formats. The manuscript also identifies specific endocytosis pathways that interact with the mineral coating to afford the improved transfection efficiency, as well as demonstrates the utility of this approach toward improving differentiation of large cell constructs. We feel that this manuscript will impact the current understanding and near-term development of materials for non-viral gene delivery in broad tissue engineering and biofabrication applications, and therefore be of interest to a diverse biomaterials audience.


Assuntos
Técnicas de Transferência de Genes , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microesferas , Adsorção , Proteína Morfogenética Óssea 2/farmacologia , Cálcio/metabolismo , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Minerais/química , Osteogênese/efeitos dos fármacos , Pinocitose/efeitos dos fármacos , Plasmídeos/metabolismo , Soluções , Alicerces Teciduais/química , Transgenes
9.
Sci Rep ; 7(1): 14070, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070799

RESUMO

Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D "self-assembly". As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications.


Assuntos
Diferenciação Celular , Linhagem da Célula , Corpos Embrioides/citologia , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Transdução de Sinais
10.
Sci Rep ; 7(1): 14211, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079806

RESUMO

Gene delivery to primary human cells is a technology of critical interest to both life science research and therapeutic applications. However, poor efficiencies in gene transfer and undesirable safety profiles remain key limitations in advancing this technology. Here, we describe a materials-based approach whereby application of a bioresorbable mineral coating improves microparticle-based transfection of plasmid DNA lipoplexes in several primary human cell types. In the presence of these mineral-coated microparticles (MCMs), we observed up to 4-fold increases in transfection efficiency with simultaneous reductions in cytotoxicity. We identified mechanisms by which MCMs improve transfection, as well as coating compositions that improve transfection in three-dimensional cell constructs. The approach afforded efficient transfection in primary human fibroblasts as well as mesenchymal and embryonic stem cells for both two- and three-dimensional transfection strategies. This MCM-based transfection is an advancement in gene delivery technology, as it represents a non-viral approach that enables highly efficient, localized transfection and allows for transfection of three-dimensional cell constructs.


Assuntos
Portadores de Fármacos/química , Microesferas , Minerais/química , Transfecção , Membrana Celular/metabolismo , DNA/química , DNA/genética , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fluoretos/química , Humanos , Lipídeos/química , Nanoestruturas/química , Transgenes/genética
11.
J Phys Chem A ; 121(35): 6646-6651, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28796947

RESUMO

This combined experimental and theoretical study answers the question whether the intramolecular hydrogen-bond strength in amino alcohols is dependent on the ring size. For this purpose, the rotational spectrum of the 3-aminopropanol-H2O van der Waals complex was recorded using Fourier-transform microwave spectroscopy and fit to the rotational, quadrupole coupling, and centrifugal distortion constants of the Watson A-reduction Hamiltonian. The experimental results are consistent with an ab initio conformation calculated at the MP2/6-311++G(d,p) level that involves the lowest energy 3-aminopropanol monomer and consists of a hydrogen bonding network. The calculated global minimum ab initio complex however comprises a higher energy monomer conformation of 3-aminopropanol. Upon complex formation with water, the O-H····N intramolecular hydrogen bond and OCCN backbone conformation of the lower energy monomer remain unchanged, in contrast to 2-aminoethanol. This behavior is consistent with the increasing strength of the intramolecular hydrogen bond of linear amino alcohols as a function of increasing chain length.

12.
Adv Mater ; 29(33)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28675637

RESUMO

Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine.


Assuntos
Nanoestruturas , Animais , Osso e Ossos , Sistemas de Liberação de Medicamentos , Minerais , Coelhos , Fator A de Crescimento do Endotélio Vascular , Cicatrização
13.
Adv Drug Deliv Rev ; 84: 68-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25453269

RESUMO

"Orthobiologics" represents an important category of therapeutics for the regeneration of bone defects caused by injuries or diseases, and bone growth factors are a particularly rapidly growing sub-category. Clinical application of bone growth factors has accelerated in the last two decades with the introduction of BMPs into clinical bone repair. Optimal use of growth factor-mediated treatments heavily relies on controlled delivery, which can substantially influence the local growth factor dose, release kinetics, and biological activity. The characteristics of the surrounding environment, or "context", during delivery can dictate growth factor loading efficiency, release and biological activity. This review discusses the influence of the surrounding environment on therapeutic delivery of bone growth factors. We specifically focus on pathophysiological components, including soluble components and cells, and how they can actively influence the therapeutic delivery and perhaps efficacy of bone growth factors.


Assuntos
Proteínas Morfogenéticas Ósseas/administração & dosagem , Regeneração Óssea/fisiologia , Portadores de Fármacos/administração & dosagem , Fatores Biológicos/administração & dosagem , Proteínas Morfogenéticas Ósseas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Humanos
14.
Biomacromolecules ; 15(6): 2038-48, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24773176

RESUMO

Vascular endothelial growth factor (VEGF) activity is highly regulated via sequestering within the ECM and cell-demanded proteolysis to release the sequestered VEGF. Numerous studies have demonstrated that VEGF activity mediates cellular events leading to angiogenesis and capillary formation in vivo. This has motivated the study of biomaterials to sustain VEGF release, and in many cases, the materials are inspired by the structure and function of the native ECM. However, there remains a need for materials that can bind to VEGF with high specificity, as the in vivo environment is rich in a variety of growth factors (GFs) and GF-binding moieties. Here we describe a strategy to control VEGF release using hydrogel microspheres with tethered peptides derived from VEGF receptor 2 (VEGFR2). Using biomaterials covalently modified with varying concentrations of two distinct VEGFR2-derived peptides with varying serum stability, we analyzed both biomaterial and environmental variables that influence VEGF release and activity. The presence of tethered VEGF-binding peptides (VBPs) resulted in significantly extended VEGF release relative to control conditions, and the resulting released VEGF significantly increased the expansion of human umbilical vein endothelial cells in culture. VEGF release rates were also strongly influenced by the concentration of serum. The presence of Feline McDonough Sarcoma-like tyrosine kinase 1 (sFlt-1), a serum-borne receptor fragment derived from VEGF receptor 1, increased VEGF release rates, although sFlt-1 was not sufficient to recapitulate the release profile of VEGF in serum. Further, the influence of serum on VEGF release was not due to protease activity or nonspecific VEGF interactions in the presence of serum-borne heparin. VEGF release kinetics correlated well with a generalizable mathematical model describing affinity-mediated release of VEGF from hydrogel microspheres in defined conditions. Modeling results suggest a potential mechanism whereby competition between VEGF and multiple VEGF-binding serum proteins including sFlt-1, soluble kinase insert domain receptor (sKDR), and α2-macroglobulin (α2-M) likely influenced VEGF release from microspheres. The materials and mathematical model described in this approach may be useful in a range of applications in which sustained, biologically active GF release of a specific GF is desirable.


Assuntos
Materiais Biomiméticos/metabolismo , Microesferas , Soro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética
15.
ACS Chem Biol ; 9(1): 45-56, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24369691

RESUMO

Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves "biologically driven assembly," in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate and establish a signaling "context" that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis.


Assuntos
Materiais Biocompatíveis/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Humanos , Transdução de Sinais , Nicho de Células-Tronco , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...